Archive for the ‘Solar Energy’ Category

Graphene: Solar Cells of the Future?

A southern California University team has come up with what could be the alternative new breed of economical and flexible solar cells. For some decades now, organic photovoltaic cells (OPV) have been acclaimed as the new solar cell prototypes and extolled for their light weight, flexible substrates, low cost and easy manufacturability. Research is now being done on them.

http://koreaittimes.com/image/solar-cells

Features of OPV cell:
The most unique aspect of the OPV cell devise is the transparent conductive electrode. This allows the light to react with the active materials inside and create the electricity. Now graphene/polymer sheets are used to create thick arrays of flexible OPV cells and they are used to convert solar radiation into electricity providing cheap solar power. 

New OPV design:

Now a research team under the guidance of Chongwu Zhou, Professor of Electrical Engineering, USC Viterbi School of Engineering has put forward the theory that the graphene – in its form as atom-thick carbon atom sheets and then attached to very flexible polymer sheets with thermo-plastic layer protection will be incorporated into the OPV cells. By chemical vapour deposition, quality graphene can now be produced in sufficient quantities also. 

Differences between silicon cells and graphene OPV cells:
The traditional silicon solar cells are more efficient as 14 watts of power will be generated from 1000 watts of sunlight where as only 1.3 watts of power can be generated from a graphene OPV cell. But these OPV cells more than compensate by having more advantages like physical flexibility and costing less.

More economical in the long run:

According to Gomez De Arco, a team member, it may be one day possible to run printing presses with these economically priced OPVs covering extensive areas very much like printing newspapers. In Gomez’ words – “They could be hung as curtains in homes or even made into fabric and be worn as power generating clothing…. imagine people powering their cellular phone or music/video device while jogging in the sun.”

Advantages of OPVs:
The flexibility of OPVs gives these cells additional advantage by being operational after repeated bending unlike the Indium-Tin-Oxide cells. Low cost, conductivity, stability, electrode/organic film compatibility, and easy availability along with flexibility give graphene OPV cell a decidedly added advantage over other solar cells.

The team:
The USC team, consisting of Chongwu Zhou, Cody W. Schlenker, Koungmin Rye, Mark E. Thompson, Yi Zhang and Gomez De Arco published a paper about their research in ACS Nano journal and are very much excited about the future potential advantages and uses that are possible with the OPV grapehne cells.

Solar Wind Power: Generating Power In The Future

As the world discovers new ways to meet its growing energy needs, energy generated from Sun, which is better known as solar power and energy generated from wind called the wind power are being considered as a means of generating power. Though these two sources of energy have attracted the scientists for a very long time, they are not able to decide, which of the two is a better source to generate power. Now scientists are looking at a third option as well. Scientists at Washington State University have now combined solar power and wind power to produce enormous energy called the solar wind power, which will satisfy all energy requirements of human kind.

Advantage of Solar wind power.

  • The scientists say that whereas the entire energy generated from solar wind will not be able to reach the planet for consumption as a lot of energy generated by the satellite has to be pumped back to copper wire to create the electron-harvesting magnetic field, yet the amount that reaches earth is more than sufficient to fulfill the needs of entire human, irrespective of the environment condition.
  • Moreover, the team of scientists at Washington State University hopes that it can generate 1 billion billion gigawatts of power by using a massive 8,400-kilometer-wide solar sail to harvest the power in solar wind.
  • According to the team at Washington State University, 1000 homes can be lit by generating enough power for them with the help of 300 meters (984 feet) of copper wire, which is attached to a two-meter-wide (6.6-foot-wide) receiver and a 10-meter (32.8-foot) sail.
  • One billion gigawatts of power could also be generated by a satellite having 1,000-meter (3,280-foot) cable with a sail 8,400 kilometers (5,220 miles) across, which are placed at roughly the same orbit.
  • The scientists feel that if some of the practical issued are solved, Solar wind power will generate the amount of power that no one including the scientists working to find new means of generating power ever expected.

 

How does the Solar wind power technology work?
The satellite launched to tap solar wind power, instead of working like a wind mill, where a blade attached to the turbine is physically rotated to generate electricity, would use charged copper wire for capturing electrons zooming away from the sun at several hundred kilometers per second.

SOLAR OR WIND POWER? WHY NOT BOTH?

Solar and wind power have long been two of the main contenders in the race to find the next big renewable energy resource. Rather than choosing between the two, scientists at Washington State University have instead combined them.

Using a massive 8,400-kilometer-wide (5,220-mile-wide) solar sail to harvest the power in solar wind, the team hopes their concept could generate 1 billion billion gigawatts of power, far more power than humanity needs — if they can get that power back to Earth.

“It’s quite amazing how much power it can actually produce,” said Dirk Schulze-Makuch, a scientist at Washington State University and a co-author of the paper, which appears in the International Journal of Astrobiology. “In principle it should work quite well, but there are some practical issues.”

Solar wind doesn’t act like wind on Earth, and the satellite wouldn’t generate electricity like a windmill.

Instead of physically rotating a blade attached to a turbine, the proposed satellite would use a charged copper wire to capture electrons zooming away from the sun at several hundred kilometers per second.

According to the team’s calculations, 300 meters (984 feet) of copper wire, attached to a two-meter-wide (6.6-foot-wide) receiver and a 10-meter (32.8-foot) sail, would generate enough power for 1,000 homes.

A satellite with a 1,000-meter (3,280-foot) cable and a sail 8,400 kilometers (5,220 miles) across, placed at roughly the same orbit, would generate one billion billion gigawatts of power.

That’s approximately 100 billion times the power Earth currently uses.

Of course, all of that power has to be able to get to Earth. Some of the energy the satellite generates would be pumped back into the copper wire to create the electron-harvesting magnetic field. The rest of the energy would power an infrared laser beam, which would help fulfill the whole planet’s energy needs day and night regardless of environmental conditions.

The main shortfall of this approach is that over the millions of miles between the satellite and Earth, even the tightest laser beam would spread out and lose a lot of its original energy. While most of the technology to create the satellite already exists, a more focused laser would be necessary, said Schulze-Makuch.

Greg Howes, a scientist at the University of Iowa, agrees that “the energy is certainly there,” in solar wind, and that to generate practical amounts of energy from solar wind would require a very big satellite, “but the practical constraints are a big question.”

Brooks Harrop, the other co-author of the journal paper, said that they made “practically no allowance for engineering difficulties,” and that these problems would have to be solved before any satellite like it could be deployed.

Solar Wind Power: Generating Power In The Future

As the world discovers new ways to meet its growing energy needs, energy generated from Sun, which is better known as solar power and energy generated from wind called the wind power are being considered as a means of generating power. Though these two sources of energy have attracted the scientists for a very long time, they are not able to decide, which of the two a better source to generate power is. Now scientists are looking at a third option as well. Scientists at Washington State University have now combined solar power and wind power to produce enormous energy called the solar wind power, which will satisfy all energy requirements of human kind.

Advantages of Solar wind power.

  • The scientists say that whereas the entire energy generated from solar wind will not be able to reach the planet for consumption as a lot of energy generated by the satellite has to be pumped back to copper wire to create the electron-harvesting magnetic field, yet the amount that reaches earth is more than sufficient to fulfill the needs of entire human, irrespective of the environment condition.
  • Moreover, the team of scientists at Washington State University hopes that it can generate 1 billion billion giga watts of power by using a massive 8,400-kilometer-wide solar sail to harvest the power in solar wind.
  • According to the team at Washington State University, 1000 homes can be lit by generating enough power for them with the help of 300 meters (984 feet) of copper wire, which is attached to a two-meter-wide (6.6-foot-wide) receiver and a 10-meter (32.8-foot) sail.
  • One billion giga watts of power could also be generated by a satellite having 1,000-meter (3,280-foot) cable with a sail 8,400 kilometers (5,220 miles) across, which are placed at roughly the same orbit.
  • The scientists feel that if some of the practical issued are solved, Solar wind power will generate the amount of power that no one including the scientists working to find new means of generating power ever expected.

The satellite launched to tap solar wind power, instead of working like a wind mill, where a blade attached to the turbine is physically rotated to generate electricity, would use charged copper wire for capturing electrons zooming away from the sun at several hundred kilometers per second.